大象传媒有限公司法人_: 流行趋势背后的原因,是否让人感到困惑?

大象传媒有限公司法人: 流行趋势背后的原因,是否让人感到困惑?_专业版30.55.56

更新时间: 浏览次数:962



大象传媒有限公司法人: 流行趋势背后的原因,是否让人感到困惑?_专业版30.55.56各观看《今日汇总》


大象传媒有限公司法人: 流行趋势背后的原因,是否让人感到困惑?_专业版30.55.56各热线观看2025已更新(2025已更新)


大象传媒有限公司法人: 流行趋势背后的原因,是否让人感到困惑?_专业版30.55.56售后观看电话-24小时在线客服(各中心)查询热线:



全国服务区域:滁州、沈阳、东莞、齐齐哈尔、安顺、常德、儋州、宜宾、三明、庆阳、安康、漯河、怒江、杭州、攀枝花、鹤壁、廊坊、新疆、济宁、吉林、六盘水、台州、包头、阜阳、随州、昌吉、汕头、南宁、邢台等城市。










大象传媒有限公司法人: 流行趋势背后的原因,是否让人感到困惑?_专业版30.55.56
















大象传媒有限公司法人






















全国服务区域:滁州、沈阳、东莞、齐齐哈尔、安顺、常德、儋州、宜宾、三明、庆阳、安康、漯河、怒江、杭州、攀枝花、鹤壁、廊坊、新疆、济宁、吉林、六盘水、台州、包头、阜阳、随州、昌吉、汕头、南宁、邢台等城市。























_高级版49.58.62
















大象传媒有限公司法人:
















黄石市下陆区、荆州市公安县、怀化市中方县、九江市都昌县、广西贺州市平桂区、广西柳州市融安县、临沂市河东区天水市武山县、文昌市会文镇、鸡西市鸡东县、玉溪市易门县、黔南荔波县、陇南市文县、南京市雨花台区、临沧市沧源佤族自治县、延安市子长市、吉林市昌邑区绥化市肇东市、威海市荣成市、营口市老边区、洛阳市孟津区、广西桂林市资源县、曲靖市麒麟区、铁岭市开原市通化市辉南县、延边龙井市、内蒙古乌海市海南区、苏州市昆山市、吉林市桦甸市、通化市梅河口市、东莞市茶山镇永州市零陵区、宿迁市宿豫区、昌江黎族自治县乌烈镇、重庆市酉阳县、兰州市安宁区、江门市鹤山市、乐东黎族自治县大安镇
















惠州市惠城区、潍坊市奎文区、新乡市卫辉市、五指山市通什、徐州市丰县、甘孜色达县亳州市涡阳县、广安市岳池县、广州市荔湾区、绥化市北林区、万宁市龙滚镇、安康市汉阴县、晋中市介休市黄山市屯溪区、中山市东凤镇、天津市津南区、潍坊市奎文区、三明市清流县、邵阳市邵东市、黔东南岑巩县、黔东南黎平县、齐齐哈尔市铁锋区
















恩施州利川市、东方市大田镇、广西桂林市平乐县、周口市西华县、六安市金安区重庆市彭水苗族土家族自治县、郴州市临武县、重庆市江津区、广元市旺苍县、大连市普兰店区德州市禹城市、延安市宜川县、徐州市沛县、湛江市吴川市、郴州市宜章县、吉林市昌邑区、运城市绛县、广西崇左市凭祥市、自贡市荣县、延安市富县梅州市蕉岭县、榆林市神木市、巴中市通江县、池州市石台县、咸宁市通山县、揭阳市普宁市、重庆市城口县、广西贵港市港南区、邵阳市新邵县
















宁德市古田县、驻马店市遂平县、重庆市梁平区、乐东黎族自治县千家镇、安阳市滑县、清远市清城区、南昌市安义县、安康市岚皋县、临汾市古县、常德市澧县  赣州市寻乌县、三明市沙县区、韶关市始兴县、中山市南朗镇、邵阳市隆回县、安阳市汤阴县、温州市苍南县、大庆市萨尔图区
















黔西南册亨县、广州市南沙区、忻州市五台县、大理祥云县、张掖市民乐县、潍坊市昌邑市、晋中市灵石县澄迈县金江镇、广西百色市平果市、雅安市天全县、濮阳市清丰县、盐城市盐都区郑州市中原区、临沂市沂南县、辽源市东丰县、武威市古浪县、南阳市内乡县、鸡西市鸡冠区吉安市吉安县、赣州市上犹县、乐山市沐川县、安庆市宿松县、辽阳市白塔区、海口市美兰区、广安市邻水县、天津市南开区、黔东南雷山县、文昌市龙楼镇海西蒙古族茫崖市、贵阳市南明区、黄冈市黄梅县、三明市大田县、衢州市江山市、肇庆市怀集县、芜湖市繁昌区、郴州市安仁县、南通市崇川区遵义市赤水市、上饶市万年县、大理剑川县、延安市富县、铜川市印台区
















铜仁市思南县、长沙市浏阳市、安康市旬阳市、绵阳市三台县、泰安市宁阳县、玉树治多县、马鞍山市雨山区、成都市温江区、重庆市江津区、酒泉市金塔县三门峡市渑池县、六盘水市六枝特区、昌江黎族自治县王下乡、兰州市永登县、中山市大涌镇、泸州市纳溪区、梅州市丰顺县、海西蒙古族茫崖市、咸阳市泾阳县、重庆市秀山县锦州市凌海市、朝阳市建平县、儋州市兰洋镇、牡丹江市宁安市、漳州市漳浦县
















大连市西岗区、菏泽市郓城县、汕尾市陆丰市、自贡市自流井区、武汉市东西湖区、常州市新北区、黔南都匀市、重庆市垫江县、商丘市睢县、广州市从化区凉山雷波县、上饶市万年县、清远市连州市、抚州市黎川县、益阳市安化县、楚雄楚雄市、商丘市虞城县、盘锦市大洼区安庆市宜秀区、天津市武清区、宁夏银川市金凤区、辽源市龙山区、渭南市华州区、白沙黎族自治县金波乡、德阳市罗江区、毕节市大方县、西宁市城北区咸阳市旬邑县、广州市南沙区、兰州市七里河区、广安市邻水县、郴州市嘉禾县




赣州市信丰县、通化市辉南县、内蒙古呼伦贝尔市扎赉诺尔区、雅安市雨城区、长春市朝阳区、重庆市大渡口区、泰州市泰兴市、丹东市元宝区、陵水黎族自治县文罗镇、阜阳市太和县  内蒙古呼和浩特市新城区、黔东南岑巩县、中山市东凤镇、贵阳市乌当区、四平市公主岭市、北京市平谷区、漳州市华安县
















锦州市黑山县、青岛市胶州市、武汉市黄陂区、淄博市淄川区、济源市市辖区、广西河池市巴马瑶族自治县、南京市鼓楼区、南充市仪陇县、韶关市南雄市上海市浦东新区、九江市湖口县、文昌市重兴镇、运城市万荣县、宿州市萧县




泉州市永春县、天津市宁河区、牡丹江市爱民区、昌江黎族自治县海尾镇、丽江市永胜县、临夏临夏市、重庆市大渡口区、遂宁市大英县吉林市舒兰市、镇江市句容市、甘南临潭县、昆明市呈贡区、汕头市潮阳区、安顺市普定县、韶关市曲江区安康市紫阳县、南昌市湾里区、许昌市长葛市、重庆市巫山县、绥化市望奎县、蚌埠市禹会区、内蒙古包头市东河区、临汾市乡宁县、晋中市太谷区




内蒙古锡林郭勒盟苏尼特左旗、陇南市徽县、聊城市东阿县、九江市都昌县、苏州市姑苏区、德阳市中江县、鞍山市铁西区、临沂市临沭县、淮安市盱眙县遵义市习水县、宁夏银川市灵武市、澄迈县中兴镇、楚雄楚雄市、中山市西区街道、洛阳市新安县、保亭黎族苗族自治县保城镇、海东市平安区
















广西防城港市防城区、宜宾市江安县、泉州市石狮市、广西河池市环江毛南族自治县、雅安市宝兴县、宜春市袁州区、聊城市高唐县西宁市大通回族土族自治县、孝感市安陆市、长沙市芙蓉区、广西北海市合浦县、鞍山市铁西区、新乡市长垣市、长春市双阳区内蒙古包头市九原区、乐山市马边彝族自治县、牡丹江市东安区、日照市东港区、营口市鲅鱼圈区、自贡市荣县、遂宁市大英县、常州市新北区、漳州市诏安县黔西南贞丰县、长治市潞城区、重庆市武隆区、益阳市赫山区、达州市开江县、鹤岗市兴安区、郑州市金水区、万宁市和乐镇、成都市都江堰市、忻州市神池县铜仁市石阡县、鄂州市华容区、洛阳市宜阳县、宜春市铜鼓县、大理云龙县、太原市娄烦县、大连市甘井子区、宁夏吴忠市盐池县、茂名市信宜市、咸宁市通山县
















铜仁市印江县、马鞍山市含山县、中山市三角镇、乐东黎族自治县利国镇、内蒙古呼伦贝尔市陈巴尔虎旗、咸阳市永寿县鹤岗市东山区、晋中市榆社县、广元市苍溪县、枣庄市滕州市、广西崇左市扶绥县、朔州市山阴县乐山市沙湾区、锦州市北镇市、上海市浦东新区、黔南三都水族自治县、沈阳市康平县、广西桂林市灌阳县、金华市义乌市、榆林市米脂县、兰州市城关区定安县龙河镇、徐州市贾汪区、忻州市岢岚县、青岛市崂山区、资阳市安岳县、绵阳市安州区、咸宁市通山县、齐齐哈尔市依安县铜仁市玉屏侗族自治县、天水市武山县、贵阳市观山湖区、天津市南开区、定西市安定区、广西贺州市富川瑶族自治县、威海市环翠区、梅州市平远县

  在医疗数字化浪潮中,人工智能(AI)正加速进入临床实践。从影像识别、检验报告到辅助决策,AI正在重塑医生的工作方式,也在悄然改变着患者的就诊体验。AI能取代医生吗?面对这位“智能医生”,患者该如何理解它、使用它?它又如何成为医生的“眼睛”与“大脑”?

  近日,本报记者专访中国医学科学院阜外医院心律失常中心原主任、民盟中央卫生与健康委员会主任张澍,中国医学科学院肿瘤医院胸外科主任医师、民盟中央卫生与健康委员会副主任邵康,首都医科大学附属北京朝阳医院超声医学科副主任、农工党北京市委会联络工作委员会委员于泽兴,从心脏、肺部、超声诊断三个不同领域,探讨AI在临床中的角色与边界。

  张澍:AI是“标准答案”而人的健康是主观题

  当深度学习算法仅用0.8秒便可完成冠脉的三维重建,当神经网络在2000万份心电图中精准捕捉到异常波动,人工智能正在深刻改变心血管诊疗的基础逻辑。

  “AI的本质是一套算法,它建立在海量的医学知识和临床数据之上。”张澍介绍,在临床应用中,配备AI技术的影像设备能够在极短的时间内,从成千上万张图像中精准定位异常病变点,协助医生识别早期心脏结构的异常、冠状动脉的钙化以及心肌的肥厚。“这种高效的判断,甚至能够超越人眼。”

  在他看来,这正是人工智能的优势——速度快、处理量大、分析深入,最终目标是精准。然而,目前存在两种极端观点:一种认为AI已经能够取代医生,另一种则认为AI在医疗领域的应用并不可靠。张澍认为,通过大量案例和指南的“喂养”,AI能够迅速提供针对常见疾病和轻微病症的标准化诊断和建议。“你无法期望一个初出茅庐的年轻医生立即独立担当重任,然而,一个新入行的AI却能够整合众多资深医生的丰富经验,迅速提供标准化的解决方案。这使得AI成为辅助诊疗过程中的得力助手,尤其在处理常见疾病或那些已有标准化治疗方案的病例时,AI可充当‘虚拟医生’的角色。”

  然而,张澍强调,这种能力并不能无限制地扩展。人工智能在识别“共性”疾病方面表现出色,但人类的健康问题往往是一道“主观题”,其中包含着复杂且难以量化的“个性”因素。在处理复杂的心血管疾病,如心律失常时,AI技术能够协助医生快速识别潜在风险和心电图异常。然而,要深入理解疾病发展的全身性原因和动态变化过程,医生的临床经验和对患者个体状况的精准评估则显得尤为重要。“心脏并非独立运作的器官,其健康状况及功能表现受到心理状态、整体环境、生活习惯等多种因素的共同作用。”张澍指出。

  例如,焦虑的个体可能会经历胸闷和心悸等症状,这些不适感源于情绪对心脏功能的影响,而非心脏存在任何器质性问题。“即便AI技术再先进,目前它仍无法准确判断一个人是否正承受心理压力、睡眠障碍,或是家庭与环境的变动。目前我们所提供的训练数据远远不足,因为与‘心’相关的人的整体状态,往往不是仅凭临床‘指标+图像’就能完全阐释的。”张澍进一步补充道。

  目前,随着AI技术从后台支持走向前台服务,它不再局限于为医生提供辅助决策,而是开始直接与患者互动,参与初步的问诊过程,问题也开始逐渐显现。“部分患者对‘AI问诊’平台抱有过分的信任,认为通过回答几个问题、获取一份报告便能替代与医生的面对面咨询”,张澍提醒,尽管AI平台能够利用算法模型初步识别患病风险并提供标准化建议,但由于它缺乏对“人心”的真正理解,有时反而可能导致病情延误。

  “AI可以是一个优秀的‘起点’,但绝非‘终极诊断’系统。”张澍强调,特别是在心血管领域,许多疾病的早期迹象微弱到几乎难以察觉,例如偶尔的心悸、轻微的乏力,患者常常不以为意。然而,这些看似普通的症状背后,可能隐藏着严重的心律失常风险。这类复杂且隐蔽的病情,单凭一台AI、一次线上咨询,是无法实现精确识别的。

  如何把握AI在现代临床实践中的应用?张澍生动地描述道:“从传统的水银血压计到现代电子血压监测器,从听诊器到先进的可穿戴心电监测设备,医学领域一直在进步和演变。AI的融入,正是这一持续发展过程中的一个环节,而且它代表了一次真正的革命。”

  而对于患者而言,未来的医疗不是“人退AI进”,而是“人机共治”,将科技的速度与人性的温度融为一体,用AI的“理性判断”与医生的“经验推理”实现更精准的诊疗。医学AI的终极形态,并非取代人类在希波克拉底誓言下的深思,而是将机器数据的确定性转化为临床过程的潜在可能性,加速并优化诊疗流程。在这个人机共存的诊疗新时代,每一次心跳既是生物电信号,也是生命故事的独特旋律。

  邵康:AI是个“好学生”但还不是“好医生”

  作为深耕一线的资深胸外科专家,邵康对人工智能在医疗领域的应用有着深刻洞察:“AI就像个过目不忘的超级学霸,堪称医生的‘超级大脑’,是极具潜力的临床助手。”

  从最基础的病历书写、病情录入,到门诊中的影像识别、辅助诊断,再到初步治疗方案的建议,AI几乎可以覆盖医生工作的各个环节,邵康介绍:“它的最大优势是稳定、全面、不疲劳,能承担大量重复性工作。尤其在图像处理方面,AI的表现已经超过了许多经验尚浅的医生。”

  以肺结节筛查为例,传统阅片模式下,医生每看一个病人,需要手动翻阅300至400张 CT断层图像,不仅耗时耗力,还易出现视觉疲劳导致漏诊。而 AI凭借深度学习算法,可在数秒内完成全肺扫描,不仅能精准标注病灶位置,还能量化分析结节大小、密度、边缘特征等参数,并基于大数据模型给出初步良恶性概率评估。

  “以往对一位患者的影像判读需5至10分钟,现在 AI辅助下仅需数秒即可完成初筛。”邵康提到,这种效率的提升,显著优化了诊疗流程,让医生得以将更多精力投入到复杂病情研判与个体化治疗方案制定中。

  对于肺癌影像诊断的准确率,AI已能与经验丰富的主治医师比肩。临床实践中,医生只要输入准确的疾病相关信息,AI就可以根据指南、共识给出全面、准确的疾病诊疗方案供医生参考。

  邵康直言:“对于知识更新滞后的从业者而言,部分成熟的AI系统确实展现出更强的知识储备与分析能力。”然而,在肯定技术优势的同时,邵康反复强调 AI的临床应用边界:“医学的本质是针对‘生病之人’,而非仅仅是‘疾病’。”

  临床实践中,患者的基础状况、心理状态、生活环境等信息,往往是左右诊疗决策的关键变量。这些难以量化的“隐藏参数”,恰是 AI当前的技术盲区。

  于泽兴:超声不是“看图说话”那么简单

  当人们谈论人工智能对医疗行业的影响时,影像科常常被视为“最容易被AI替代”的领域,甚至有人断言,AI时代最先“下岗”的,将是影像科医生。

  “确实,从很早开始,就有团队尝试将AI引入影像诊断,尤其在放射科领域应用较多。”于泽兴介绍,像X光片、CT片这类标准化的平面图像,非常适合深度学习算法进行训练与识别,因此AI在这些领域的发展起步较快。

  不过,作为医学影像中的重要分支,超声科的情况却远比想象中复杂。于泽兴指出,虽然超声也是较早引入人工智能技术的科室之一,并积累了一定的探索经验,但要让AI真正扮演临床“决策者”的角色,还面临诸多挑战。

  在甲状腺、乳腺等结构清晰、图像稳定的部位,有的软件已经具备初步的辅助诊断能力,可以在医生操作过程中自动识别结节并评估其风险等级,其表现相当于一位年轻的主治医生。

  然而,这种应用目前仍局限于少数场景。“因为超声检查本质上是一个动态探查的过程,它不只是‘看图说话’,医生需要一边操控探头,一边观察屏幕上不断变化的图像,在瞬息之间捕捉关键线索。”于泽兴表示,这一过程中,医生的感知、操作和认知能力缺一不可,经验远比图像本身更为关键。

  “胖的人、瘦的人,器官的位置和形态不一样,超声医生扫查时的角度、范围、按压的力度都不同,需要实时调整、因人而异。”于泽兴说。“这些操作细节,都是AI目前难以胜任的。”

  那么,如果仅从图像分析来说,患者是否可以上传报告,在AI上获取“诊断建议”?

  于泽兴提醒,这种做法存在不小的安全隐患,比如甲状腺的某些结节,从图像上看与恶性肿瘤极为相似,AI可能会直接标红提示风险,“但如果结合患者既往的检查记录,可能会发现这些结节原本较大,随着时间逐渐缩小,是一种良性的退变结节。而这种需要综合病史、遗传史乃至病程变化作出的判断,是当前AI尚不具备的能力。”

  不过,应该看到的是,在目前超声医生资源紧张的背景下,无论是三甲医院还是基层机构,合理引入AI,将在一定程度上缓解人力压力。“技术无法取代医生的经验和判断,但它可以成为医生的工具,为他们加一双‘眼’、多一双‘手’,把专业力量用在更需要的地方。”于泽兴说。(完)(《中国新闻》报刘益伶报道) 【编辑:张子怡】

相关推荐:
  • 友情链接:
  • 度过情侣尴尬期的标志 何同学复更 男子变现1公斤黄金净赚10万 中国联通原党组成员副总经理曹兴信被决定逮捕 男子应酬醉酒被送到酒店第二天离世中方回应特朗普称或将大幅降低对华关税 怎么办无畏在指我诶 法英德等国领导人反对取消对俄制裁